Perfect Mclain Groups Are Superperfect

نویسنده

  • A. J. BERRICK
چکیده

The study of McLain groups M(S, F) offers an attractive interplay between group theory and combinatorial set theory. This arises from the choice of a linearly ordered set S in the definition. Recall (from, for example, [4], (6.2)) that this involves considering the vector space V over the field F whose basis elements v are indexed by elements of x S . M(S, F) is then the group of linear transformations of V into itself generated by those transformations of the form 1 + ae (a e F , x < y in S ), where e sends V to v and annihilates the rest of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Homology of Peiier Products of Groups

The Peiier product of groups rst arose in work of J.H.C. White-head on the structure of relative homotopy groups, and is closely related to problems of asphericity for two-complexes. We develop algebraic methods for computing the second integral homology of a Peiier product. We s h o w t h a t a Peiier product of superperfect groups is superperfect, and determine when a Peiier product of cyclic...

متن کامل

The Homology of Peiffer Products of Groups

The Peiffer product of groups first arose in work of J.H.C. Whitehead on the structure of relative homotopy groups, and is closely related to problems of asphericity for two-complexes. We develop algebraic methods for computing the second integral homology of a Peiffer product. We show that a Peiffer product of superperfect groups is superperfect, and determine when a Peiffer product of cyclic ...

متن کامل

On finiteness of odd superperfect numbers

In this paper, some new results concerning the equation σ(N) = aM,σ(M) = bN are proved, which implies that there are only finitely many odd superperfect numbers with a fixed number of distinct prime factors.

متن کامل

Testing Superperfection of k-Trees

An interval coloring of a weighted graph with non-negative weights, maps each vertex onto an open interval on the real line with width equal to the weight of the vertex, such that adjacent vertices are mapped to disjoint intervals. The total width of an interval coloring is defined as the width of the union of the intervals. The interval chromatic number of a weighted graph is the least total w...

متن کامل

Circular colorings of weighted graphs

Suppose that G is a nite simple graph and w is a weight function which assigns to each vertex of G a nonnegative real number. Let C be a circle of length t. A t-circular coloring of (G; w) is a mapping of the vertices of G to arcs of C such that (x)\(y) = if xy 2 E (G) and (x) has length w(x). The circular-chromatic number of (G; w) is the least t for which there is a t-circular coloring of (G;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008